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A Note on the Projecton of Gibbs Measures 
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We give an example  of a project ion which maps  two Gibbs  measures  for the 
same interact ion into Gibbs  measures  for different interactions.  As a corol lary 
we find a case where by decimat ion a non-Gibbs ian  measure is t ransformed into 
a Gibbs  measure. 

KEY W O R D S :  Gibbs  measures;  non-Gibbs ian  measures;  decimat ion trans- 
formation;  projected measures. 

1. INTRODUCTION 

In recent years there has emerged an increasing interest in the study of 
restrictions of Gibbs measures, coming from both renormalization-group 
theory and interacting particle systems. In renormalization-group theory 
one considers, for instance, decimation (that is, restriction to a sublattice 
of the same dimension as the original lattice) applied to the pure phase(s) 
of the system described by a given interaction. In probabilistic cellular 
automata (PCA) the study of stationary states which are projections (that 
is, restrictions to a lower-dimensional sublattice) of Gibbs measures is of 
particular interest. In both classes of these examples one starts with 
the Gibbs measures for the given interaction. After the application of the 
respective transformation the result in all known examples is one of the 
following two cases: The decimation or projection of Gibbs measures for 
the same interaction yields either Gibbs measures for which the interac- 
tions coincide, or else it produces non-Gibbsian measures. Only these two 
possibilities occur, for instance, in the case of the stationary states of 
various PCA where strictly positive transition probabilities are given, and 
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also for general block-spin t ransformations on lattice spin systems (for 
details see ref. 1, Theorem 1; ref. 2, Theorem3.4) .  Also Schonmann 's  
example (ref. 3, Proposi t ion 2) follows this pattern,  since the projection on 
the line of the pure phases of the two-dimensional  nearest-neighbor 
ferromagnetic Ising model in the subcritical regime leads to non-Gibbs ian  
measures. 

Here we provide an example similar to Schonmann's ,  but in which the 
projection maps  two Gibbs measures for the same interaction into Gibbs  
measures for different interactions. At the same time our  example implies 
a case where by decimation a non-Gibbsian  measure transforms into a 
Gibbs  measure. 

2. M A I N  RESULT 

We consider here spins assuming the values - 1 and + 1, living on 7"- 
and its various sublattices. The identification 7 ' = Z |  {0} will be made, 
and we will call the corresponding configuration spaces s = { - l, + 1 } z: 
and s = { - 1, + 1 }z. Next we introduce the family of one-dimensional  
sublattices 17"= {xsT7: x m o d l = O } ,  and the associated configuration 
spaces I 2 t = { - 1 ,  + l} tZ .  Denote  by /a + and /~- the + and - phase, 
respectively, of the two-dimensional  ferromagnetic nearest-neighbor Ising 
model (above the critical inverse temperature  fl,.), and by vt + and vT,  
respectively, their projections onto 17'. Note  that the measures v~ + and v 7 
can also be thought  of as being the decimated measures of v~- and v~-, 
onto  12~. 

For  completeness we first give some notat ion and results concerning 
cluster expansions (more details can be found in ref. 4). For  a sequence of 
side lengths L T ~ ,  we consider the square boxes 

V ~  VL= { i =  (x, .v)~ 7' 2" -L<~x , y< ~L }  

and their one-dimensional  segments 

AI= Vn177 = { i=(x ,  y)E V: y=O, x mod 1=0} 

The subvolume W / is defined by 

With + boundary  conditions, the energy of a configuration a on V is given 
by 

H ~ ( a ) =  - ~" (aiG j -  1) (1) 
<~>~ ~"~0 
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where the sum is over all nearest-neighbor pairs (0") ,  iE V o r j ~  V. We put 
a ; = + l  for a l l i c V .  

Let /~+ be the corresponding Gibbs measure on V at inverse 
temperature fl, i.e., 

p + ( a ) =  Z v '(fl) exp[  - f i l l  ~. (o)]  

where Zv(fl) is the usual normalizing partit ion function. We want to study 
+ i.e., the restriction of/a + to the segment A/. For  the projection v + of ,Uv, At 

a configuration 4 on At, v J has weights 

v , + ( 4 ) = ~  ( a = 4  on At) 

+ (2) = ~ ~ , ,  ( ~ ) l o=~o~  
a i = + l , iE  HIt 

Obviously, for any finite L and fl, v~- is a Gibbs measure for some 
Hamiltonian 

"~A,(~) = --log v L(4) 

Its conditional probability distribution at the origin is 

Here, 

v.~,(~,, = ~o I ~ = 4 on Al\o ) - 

1 + exp[h~,(4)]  
(3) 

v,;,(r 
h+~(4) = - l o g  vJ-,(4-----~ (4) 

is the energy difference W, + t ~ ,  AI,',,--"VF+t;~"~A,,'~ , (or relative energy) for flipping 
the spin at the origin, and 4 ~ is the configuration defined by 

{ 4_,,. if x ~ o  
4'~= 4,, if x = 0  

Note also that for l > 1 

where 

Z + , ~  W, (fl) 
exp[  - h ,+(4)] = (5) 

z ~,/"(fl)  

Z + . ~  w, ( f l )=  ~ e x p [ - - f l H  +;r (6) 

H ~v;e(a) = - Y'. ( a io~ i -  1)1, ,=r A, (7)  
( ~ j > r ' , W t # O  
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are the parti t ion function and the Hamii tonian,  respectively, for the volume 
Wt with + boundary  conditions outside and ~ boundary  conditions on A t. 
Similar definitions can be given starting from - boundary  conditions on 
V, changing all superscripts + into - .  

We will represent the configurations on W~ by sets of  disjoint closed 
contours,  as is usually done for + boundary  conditions. Let Fw~ denote the 
set of all closed contours  on W~. If a configuration a is represented by a 

+ corresponding to set of contours  {y,}~ =~ c Fw~, then the Hamil tonian  H w, 
+ boundary  conditions is given by 

H~v,( a ) = 2  i %1 
~ = 1  

where b'=l is the length of~,,. 
For  a given contour  ~, and Ce Wt, define c/((y, ~) as the number  of 

edges of ~ touching some site x e/7/  for which ~.,. = - 1. It is not hard to 
see then that 

~ + , ~  
z w, (fl) 

- h  +,(~)=4fl~o + log ~ (8) 
z ~;r176 

where 

and 

~+.r 1 f i  w, (fl)= 1 + ~ ~ ~ zr 
n = l  " t , l . . . ) , n e F W i  ~ t = l  

disjoint  

zr = e x p [ - 2 f l  171 + 4flc/(),, ~)] 

We use the technique of cluster expansions to calculate the ratio of the two 
partition functions. We obtain that 

l 
-hL(~)=4fl~o+ Z ~ Z ~r,,(y,...),,,) 

n =  I )'1 " " ) ' h e  F W  I 

[) ] x zr - zr (9) 
I ~ = 1  

where 

C connec ted  g raphs  (:t~t') is an 
with n vert ices edge of  C 

0 if ),~, y~. are disjoint 

~b(7~' ~'~') = - 1 otherwise 
(lO) 
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Theorem 1. For  any l>/3 there exists fl,.<~ fit < ~ such that for all 
fl/> fl~ the projections v~ + and v t- are Gibbs  measures with respect to two 
physically nonequivalent,  absolutely summable  interactions on I2t. 

Proof. We use the low-temperature  expansion for the relative energy 
of the projected measures as described above (see also ref. 4). Uniform 
convergence of the expansion would imply the existence of a continuous 
version of conditional probabili t ies determined by the relative energy. This 
then would guarantee the existence of an absolutely summable  interaction 
for which the measure would be Gibbsian (ref. 2, Theorem 2.12; see also 
references therein). 

Let us denote by h~+(~) the relative energy for v~ + of a spinflip at an 
arbi trary site. We make an expansion for ht+(~) in terms of contours  on 
(the dual lattice of) 7/z\17/. The weight of a contour  7 is 

zr = e x p [ - - 2 f l  I~'1 + 4flc(~, ~)] 

where c(y, ~) is the number  of edges of y touching some site x ~ l Z  for 
which r = - 1, and IV] denotes the length of the contour  y. Uniform con- 
vergence is obtained at sufficiently low temperatures  if there exists some 
K / >  0 such that for any configuration ~ the weight zr exp ( -2K~f l  I~'1 )- 
To  cope with the worst that can happen we choose r = - 1  for all x e 17/, 
as then c(7, ~), for fixed 7, reaches its maximum.  Figure 1 shows the 
"worst"  type of contour  (for 1= 3), that is, the one which visits as many  
minuses as possible, given its length. Clearly, for K I = ( l ~ 2 ) / ( I +  1) the 
inequality 

I~1 - 2c(7, ~) ~ Kt 171 

holds for r = - 1  and the "worst"  contour,  and therefore for all ~ and all 
contours.  Thus we have 

zr ~< exp( - 2ilK, I~'l) 

which is sufficient for uniform convergence. Moreover ,  as l grows, K~ 

-1 i I 
Fig. 1. The "worst" type of contour (/=3). 
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]. I I . . .  I | I 

Fig. 2, Range of convergence of the expansion. 

becomes larger, thus the uniform convergence extends to wider temperature 
ranges. These temperature ranges are delimited by the values 

fl~ flo~ 1+1 

where fix is the threshold temperature for the cluster expansion on Z 2 (see 
Fig. 2). Obviously, h/+ (~)=  h 7 ( - r  for any r e 0 I, but as also can be seen 
from the expansion, the functions h~ + and h 7 are not even in r In 
particular, they are different and the associated Hamiltonians contain 
external magnetic fields of different sign. This then implies that the inter- 
actions cannot be physically equivalent. II 

R e m a r k s  1. As noted before, Schonmann has proven that there is 
no absolutely summable interaction on 12~ such that v~- or v (  is 
Gibbsian. (3) 

2. From the point of view of the cluster expansion v~ behaves like 
v~', since in both cases there are infinitely many contours of different 
length, all with the same weight, which make the expansion diverge. There- 
fore we expect that neither v~ nor, by similar reasoning, v;- is a Gibbs 
measure. 

3. Note that the fact that v [  and v[, i.e., the decimations for 
(the non-Gibbsian) v~- and v~- onto 12~, are Gibbsian within a certain 
temperature range is similar to the situation encountered in ref. 5. 

4. Because the interactions of vt + and v 7 are not the same, we can 
conclude that the projection of any mixture # = ; t p + + ( l - 2 ) / ~  - ,  
0 < ;t < 1, onto 17] is non-Gibbsian (see ref. 2, Corollary 4.13) 
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